- - . ) .’;.;'1 [ T (‘OPY Q
NCLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSE
RTY CLASSIEICATION OF THIS PAGE.

REPORT DOCUMENTATION PAGE

A e
EPORT SECURITY CLASSIFICATION 1d. RRSTRICTIVE MARKINGS

3. DISTRIlUTlQNIAVNmIUTY Of REPORT

Approved for public release;
distribution unlimited.

MBER(S Cb = /5 MONITORNG GRGANIZATIGN REFORT NUMBER(S)
D ARo R6779.3-El-AL

IRFORMING ORGANIZATION REH 2™ .

AD-A219 356

63. NAME OF PERFORMING ORGANIZATION - ]6b. OFFICE SYMBOL  7a. NAME OF MONITORING ORGANIZATION
] Center of Excellence in Al (f appicebie)
University of Pennsylvania U. S. Army Research Office
6¢c. ADDRESS (Cty, State, and 2iP Codle) 7b. ADDRESS (City, State, and ZiP Code)
ept. of Computer & Information Science P. 0. Box 12211
Bl deinbta: EE " 19104-6389 Research Triangle Park, NC 27709-2211
8a. NAME OF FUNCING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION 0f applicable)
U. S. Army Research Office Danc 63-99.¢-003/
8¢ ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P. 0. Box 12211 v SR S - ACeEssioN N

Research Triangle Park, NC 27709-2211

11. NITLE (includde Secunty Classification)
A New Approach to Laboratory Motor Control MMCS: The Modular Motor Control System
(MS-C15-89-17) —
12. PERSONAL AUTHOR(S)
Peter I. Corke

° 132. TYPE OF REPORT : 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [S. PAGE COUNT
Interim technical FROM TO February 1989 53

. EMENT.
6. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

Oflihe authar(g) and shguld not ’be constﬁgd ”i an gfficial Dggartmen: of the Army position

17. COSATI CODES 18. SUBJECT TERMS (Continua on reverse if necessary and identify by biock number)
FHELD GROUP SUS-GROUP

=y Robotics, motion control systems_(st,m\

19. ABSTRALT (Continue on reverse if necessary and identify by block number)

.

> Many projects within the GRASP laboratory involve motion control via electric servo motors, for example robots,
hands, camera mounts and tables. To date each project has been based on a unique hardware/software approach.

This document discusses the development of a new modular, and host independent, motor control system, MMCS,
for laboratory use. The background to the project and the development of the concept is traced.

An important hardware component developed is a 2 axis control motor control board that can be plugged into
an IBM PC bus or connected via an adaptor to a high performance workstation computer.

To eliminate the need for detailcd understanding of the hardware components, an abstract controller model is
proposed. Software implementing this model has been developed in a device driver for the Unix operating system.
However for those who need or wish to program at the hardwa.e level the manual describes in detail the various
custom hardware components of the system. €Ll oY /r‘ )

20. DISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Ounclassinepanummed O same As rRpT.  [Jonc users Unclassified

" T ——

223. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inciude Are2 Code) | 22¢. OFFICE SYMBOL

DD FORM 1‘73' 84 MAR $3 APR edition may “ usad until exhausted. itg !m g !§§'F’“n°N OF THIS PAGE
: All other editions are obsolete.

UNCLASSIFIED

200H072Z//77




o e

i ,mm—vzx«"ﬁvwwwwwgmw; AP T A e

e ._,.“v,..‘(‘.. I g S A gy AT T e T P TN A 5% S T ey

A
k)

L o B . . » «

UNIVERSITY of PENNSYLVANIA

sy

Department of Computer and Information Science
School of Enginesring and Applied Science
Philadeiphia, PA 15164-6389




A NEW APPROACH TO
LABORATORY MOTOR CONTROL
MMCS
THE MODULAR MOTOR
CONTROL SYSTEM

Peter I. Corke

MS-CIS-89-17
GRASP LAB 175

Department of Computer and Information Science
School of Engineering and Applied Sclence
Univers!ty of Pennsylvania
Philacielphia, PA 19104

Feb 1989 Accesion ;’(1;“"'—" e e,
ebrua T
ry NTIS  Chaxl Ji

DHC  Tay O
Uannor s o ]
Justb oot )

By
Ontnibtnand

Ve e e e evend

dlS'

Al |

Acknowledgements: This work was supported in part by NSF IR184-10413-A02,
MCS-8219196-CER, CCR8716975, NSF/DCR grants 8501482, NSF/DMC 8512838, U.S. Army
grants DAA29-84-K-0061, DAA29-84-3-0027.




A New Approach to Laboratory Motor Control

MMCS

The Modular Motor Control System

Peter 1. Corke!
pic@grasp.cis.upenn.edu

Computer and Information Science Department

University of Pennsylvania
Philadelphia, PA 19104

February 23, 1989

YResearch Scientist, CSIRO Division of Manufacturing Technology, Melbourne, Australia.




X .

Abstract

Many projects within the GRASP laboratory involve motion control via electric
servo motors, for example robots, hands, camera mounts and tables. To date
each project has been based on a unique hardware/software approach.

This document discusses the development of a new modular, and host inde-
pendent, motor control system, MMCS, for laboratory use. The background to
the project and the development of the concept is traced.

An important hardware component devloped is a 2 axis control motor control
board that can be plugged into an IBM PC bus or connected via an adaptor to
a high performance workstation computer.

To eliminate the need for detailed understanding of the hardware compo-
nents, an abstract controller model is proposed. Software implementing this
model has been developed in a device driver for the Unix operating system.
However for those who need or wish to program at the hardware level, the man-
ual describes in detail the various custom hardware components of the system.
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Chapter 1

Introduction

1.1 Overview

This first chapter discusses the motivation for a new modular, and host indepen-
dent, motor control system for laboratory use. The background to the project
and the development of the concept is traced. A number of possible solutions
are preposed and discussed, leading to a general description of the system that
has been implemented.

Chapter 2 describes in detail an abstract programmer’s model of the axis
controller. Details of the servo interface hardware are hidden, allowing the
applications programmer to concentrate on higher level control. The software
implements position, velocity or torque control, selectable per axis, and the
closed loop dynamics may be modified by a digital compensation network.

Chapter 3 describes an interactive graphical tool that allows a user to con-
figure the axis controller, perform diagnostics and perform joint level motions.

The last two chapters are not essential reading for casual programmers, but
are essential for those programming at the hardware level.

Chapter 4 describes the function performed by the host bus adaptor and
also the axis controller bus, which is the same as IBM/PC bus. Details such
as redefinition of some signal lines!, and the addressing conventions used are
covered. It describes in detail the hardware implementation of the VME host
to PC bus adaptor that was built.

Chapter 5 describes in detail the hardware and programming details for the
Mark I servo interface board.

11t's not as bad as it sounds




1.2 Background and Motivation

Many projects within the GRASP lab. involve motion control via electric servo
motors, for example robots, hands, camera mounts and tables. Each project
has been based on a unique hardware/software approach. In the last few years
the approaches have included

o VAL-II control language receiving commands over a serial line from a host
computer

e RCCL (Hayward and Paul)
e RFMS multiprocessor (Zhang and Paul)

The first approach is limited by communications speed, and is not suitable
for real-time sensor based control. T2 RFMS controller has proved in practice
to be very difficult to program, and does not seem to have realized the full
potential of its parallel hardware architecture.

RCCL is a very general robot programming environment and is capable of
real-time sensor based control, as has been demonstrated by various projects
within the lab. It does have the drawback that it is tightly coupled to the VAX
architecture and Unimate robots and their controllers

RCCL provides the programmer with a particular model of the robot and
its environment. This model, based on kinematic position equations and carte-
sian representation using homogeneous transforms, is very powerful, however
there are many applications to which it is not well suited. It is at this point
that the inherent inflexibility of RCCL becomes a problem, and the applica-
tion programmer’s effort goes increasingly into outwitting and thwarting RCCL
“features”.

Based on discussions with robot users in the laboratory the following points
were made

1. Robot control hardware. It was considered that the best platform for robot
control would be a powerful single processor system like a workstation. A
single thread machine is inherently easier to program, and a workstation
provides an integrated environment for program development and high
speed execution. To allow a workstaiion to perform robot control an
interface is required to the robot’s electronic subsystems.

2. Robot interface. The RCCL controllers use a relatively high level inter-
face to the Puma robot. The Unimate controller boxes provide position
servo capability, A/D? and D/A3 converters etc. A functionally more gen-
eral interface was designed for the RFMS project, but the interface was
physically limited to use within the RFMS(board size, connectors etc).

2 Analog to digital
IDigital to analog



Professor Paul commisioned a final year project to build a zeneral pur-
pose § axis interface for the MictoVAX Qbus, but this was never finished
and there is some doubt as to whether MicroVAXs and Qbus are the
hardware platform to use in the future.

The author suggested a rmore general solution, based ca the technclogy
developed for the RFMS. The axis controller would be modular, thus al-
lowing it to be expanded easily to cope with changing requirements, for
example 7 axis robot, robot + hand, or two cooperating robots. Most
importantly the axis controllers would be independent of the host proces-
sor bus, whether it be Multibus, VMEbus or Qbus. A simple electronic
adaptor would connect the axis controller bue to the host bus, and would

. represent a relatively small fraction of the total system complexity, thus
allowing easy migration to new host computing platforms. It was decided
that the axis controller bus should be the IBM-PC bus, due to the variety
of compatible products in the marketplace.

3. Robot control software. Based on experience with RCCL and CSIRO’s

ARCL robot controller[5] it has been decided to redesign the robot control

software 30 as to be very modular, as opposed to the “monolithic” strue-

ture of RCCL. The structure looks like comprising a number of simple

interfaces and functional blocks, implemented as libraries, and on which

the applications programmer can build. The detailed work would be tack-

. led by Gaylord Holder as a Master’s project. A number of considerations
in the design are:

e at the lowest level it must be able to interface with the existing RCI
interface to Unimate controllers, as well as the new MMCS hardware.

o at the highest level it must provide a similar level of functionality to
the RCCL programming environment, since this is one (despite its
limitations) with which many workers are familiar. Within this new
programming environments different programming tools will hope-
fully spring up and eventually replace RCCL.

To restate this, a new motion controller should

e be based on a fast single thread processor

e contain a host independent and modular motor interface
e be accessible via a small and modular software library

The remainder of this document is concerned ‘vith the first two points only.
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1.3 System overview

This section provides an overview of the hardware and software componerts of

MMCS.

1.3.1 Control Processor and Software
The control processor has two main computations to perform

o High rate servo control loops for the motors

o Slower rate trajectory generation

In the existing Unimate controller the servo control loop functions are per-
formed per axis by an 8 bit 6503 microprocessor, see Figure 1.1. To achieve
high joint stiffness and dynamic performance a sample rate approaching 1kHz
is desired. There is no way that a process running under Unix (on a 1988 vin-
tage workstation) can achieve this order of response, thus the alternatives are

to

1. usc a separate processor to perform the high apeed servo calculations. The
software could run on “bare-metal” or under a real-time operating system.

2. perform the servo computation at interrupt level in a Unix device driver.

The first approach offers the most flexibility, and there are a number of
possibilities for a separate processor including

e 680x0 VME CPU cards manufactured from many sonrces. These pro-
cessor boards can plug into the VME backplane and communicate with
the host via shared memory. Having the same instruction set as the host
eliminates the need for software cross development tools. Communications
and support sctware could be developed, or an off-the-shelf package such
as VxWork: cculd be utilized.

o Bell Labs J..'FE[3] processor, which can be plugged into a SUN work-
station, and has full software support including a C compiler, and host
communication facilities.

The second approach is lower in cost but not as flexible. With an attached
processor the user can code up an experimental servo algorithm, downlnad then
run it. However, a servo loop in the kernel means that the user would have to
rewrite the driver, link a new kernel and boot it. Debugging tools exist for the
kernel but they are primitive. More seriously kernel code cannt use floating
point arithmetic. Such an approach, under the Xenix operating system, has
been described{d].

A variation on this theme is the RCI package written by John Lloyd(9]
in which the kernel interrupt handler invokes a user process function in kernel
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mode. This provides run time linkage of user code into the kernel, but debugging
remains difficult and the user code must obey some strict guidelines.

The approach taken in this project is to build hardware consistent with both
approaches, but the first implementation will be use servo loops embedded in a
device driver. The driver implements a very general servo loop capable of being
configured for position, velocity or torque mode operation. Any application that
wishes to can bypass the servo loops and specify motor currents directly (torque
mode). In this case the control algorithm is running in a user process and its
scheduling cannnot be guaranteed, with possibly serious consequences for stable
and smooth control. This is unavoidable when working under Unix.

Comparison of the two approaches in Figure 1.1 shows that the functionality
of the six 6503 servo cards in the Unimate controller has been shifted to the
host computer. Simulations of the servo software for 6-axis computation time
was done for a number of processors, and the results are summarized below

Processor Time (ms)
Sun 3/160 043
MicroVAX 3500 | 0.25
MicroVAX II 0.70

This indicates that Unix device driver based servo loops can provide satisfac-
tory sample rates on most of the GRASP laboratory machines. The simulation
doesa not take into account effects such as adaptor hardware access time, inter-
rupt latency, or service overhead time.

1.3.2 Motor interface
The motor interface was designed with the following design aims

¢ make it as host bus independent as possible

e make it as modular as possible

o use as much of the proven iSBX design[7] as possible

e control up to 16 axes

To achieve this the hardware has been partitioned into three components

1. Motor interface hardware that provides current drive sign»l to the motor
and processes signals from sensors regarding the motor’s state.

2. Axis controller bus into which motor interface cards are plugged.

3. Host adaptor to connect motor interfaces to a host computer that will
perform the servo computations.



The motor interface is the electronicg that connects the motor to the axis
controller bus. It provides an analog drive signal to the motor, and measures
shaft angle via an incremental encoder, as well as application specific quantities
via a general purpose analog input.

Control of a system with upto 16 axes introduces a number of problems
such as timing skew between sampling the first and last axis. If the system is
connected to a Unix host computer we cannot rely on software, even at driver
level to initiate sampling since interrupt latencies can vary by upto 100 usec.
Thus it was seen to be essential that sampling is controlled by a hardware clock,
and the host is notified by interrupt so that it can read and processs the state
information. The hardware clock signal, SCLOCK, is common to all motor
interface cards.

Since the host is also interrupted by the SCLOCK, by the time the inter-
rupt handler routine is entered all state information is available to be read.
This means that A/D conversion time is overlapped with the interrupt service
overhead for maximum efficiency.

Safety considerations indicate that every motor interface should have the
ability to indicate its readiness for operation or an error condition. This signal,
referred to as PANIC, is also common to all interface cards, anyone of which
can assert the line to indicate a system failure. The type of failure can be
determined by host software polling all cards.

The axis controller bus needs to be an ordinary computer bus with address,
data and control signals, but it also needs to have the SCLOCK and PANIC
signals. It was initially decided to define and use a custom bus for this purpose,
but later the decision to use the IBM PC bus was made. The PC bus is nearly
ideal in that it is simple to interface to, and a wide range of peripheral cards
is available for it. The two special signals could have been implemented by a
separate ribbon cable linking all boards, but this is not failsafe in that it is
possible for cards to be not connected. Instead two signals from the IBM PC
bus were “redefined” for these purposes and is discussed further in Chapter 4.

1.4 Acknowledgements

Professor Richard Paul provided the impetus and support for the project.

Dave Feldman did the detailed design of the servo board and design and
constructruction of the VME/PC bus adaptor. Filip Fuma and Mat Donham
designed and built the iSBX cards used in the RFMS.




Chapter 2

Application model of the
motor controller

A general model for servo motor control is proposed. It is capable of performing
most commonly required functions such as closed-loop position or velocity con-
trol. If this functionality is not required the application can also directly specify
motor current demands. The motor controller referred to here comprises

¢ The motor interface hardware described in detail in Chapter 5.

o Servo software in the kernel of the host computer
Since future interface boards may incorporate more control functionality, an
abstract user model allows the software/hardware balance to be changed without

applications being recoded.
Figure 2.1 shows the proposed control model. A number of switches S1...55
control various operating modes of the controller. Feedback can come from one

of two sources (S4)
® An incremental shaft angle encoder

e An A/D converter
A derivative block may be switched into the feedback path (S5) which will cause
a velocity servo function to be implemented. The setpoint signal may come from
either (S1) .
¢ The application program via a weite() system call, which is represented
by = in Figure 2.1.

e The A/D converter

$3 switches in an optional Coulomb friction compensation block, while §2 by-
passes the feedback control and allows the setpoint to control motor current

directly.
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Figure 2.1: Motor controller block diagram

2.1 Compensator

A compensator is included in the forward path to allow users to tailor the
dynamic response of the closed-loop system. Typically for a DC electric servo
motor, the transfer function is

e _ b

I~ s(Js+ B)

where @ is motor shaft angle, i is motor current, k is the motor torque constant,
J is the motor inertia comprising seif and reflected load inertia, and B is viscous
friction.

To provide position control, feedback is required, and to achieve good dy-
namic peformance and disturbance rejection some compensation is required.

2.1.1 The general transfer function

The controller implements a unity gain negative feedback loop on position, with
a general discrete transfer function compensator as shown in Figure 1. The

transfer function is ,
ass” -l>(l|.‘.l + ag

baz=2 + by + bo

D(:)=

]
]
]
i
S4 ‘encoder
:
)
t
]

ax+b —A——




where the coefficients a; and ); are programmable by the user. The DC zain is
given by 3" a;/ 3" b;. All coefficients and quantities are 32 bit signed integers,
so care must be given to the scaling of the integer coefficients.

Many design methodologies may be used to synthesize the compensator
coefficients[6]. If 2 continuous time transfer function is synthesized, perhaps
using any of the standard forms discusssed below, techniques such as bilininear
transform, Z-transform or pole/zero mapping[6] may be used to generate equiv-
alent discrete time transfer functions. Details of some commonly used control
strategies are given below. An example of synthesis for a PID control law is
given in Section 2.5.

2.1.2 PID implementation
The classical continuous time PID controller has a transfer function of

- d [
u-Pe+Dd‘e+Ij edt

where e is the error, demanded minus measured plant output. This may be
Laplace transformed to

U=P+Ds+1§

E
U _Ps+Ds’+1
E” s

from which it is clear that the transfer function has a pole at the origin, s = 0,
and a complex pair of zeros affected by the parameters P, I, and D.

2.1.3 PD implementation

The transfer function of a PD controller is
% =P+ Ds
which has a zero at s = ~P/D.

2.1.4 PI implementation

The transfer function of a PI controller is
U I
E=P+;

which has a zero at s = ~[/P. and a pole at the origin.

10




2.2 Control options
2.2.1 Velocity servo

A velocity servo loop may be implemented by switching in a differentiator (S5)
to the position feedback path. The differentiator is implemented by a three
point derivative

dy ~ 3yt — dye-1 + yi-2

dt 2
to yield a smoother velocity estimate. Note that the velocity units (see S4) are
either encoder counts, or transformed A/D units, per sample interval.

2.2.2 Torque servo

For torque control, the compenstation computation is completel)" switched out
(S2), and the user specified value is used directly as motor current demand.

2.2.3 Coulomb friction compensation

Coulomb friction is a non-linear effect, in which an approximately constant
torque opposes the motor’s torque. The friction torque is not necessarily the
same for each direction of rotation, and varies with joint loading, and will thus be
somewhat configuration dependant. A .ptional Coulomb friction feedforward
function may be enabled (S3) to compensate for this non-linear effect. The
compensator implemnents the control law

. _[i+ip f6>0
ME i-i, if6<0

where i is the outpu' of switch S2.

If the velocity 15 zv.., and a non-zero current is specified the sign of the
current demand (from the digital compensator) is used, since that indicates the
direction of desired motion.

icp and i., are the currents required to overcome the Coulomb friction
torques in the positive and negaiive rotational directions respectively.

2.2.4 Feedback source

The feedback signal (S4) may come from either the shaft angle incremental
encoder 8, or from the A/D converter associated with the axis. The raw data
from the A/D converter is processed with a simple linear law

¢=aADC + b

that provides scaling and offset before it is used as the feedback signal.

11




For example, opening the feedback path (S5), and selecting demand from
the A/D (S1), the servo will implement a programmable digital filter between
A/D and D/A. Application software could also log the raw or filtered signal.

2.2.5 Setpoint source

The setpoint, or demand signal may come from one of two sources (S1) as shown
in Figure 2.1. Normally it would be supplied by the user’s application program
to the device driver via a write() system call. However it may be selected to
come from the processed A/D signal, 4.

. 2.3 The Unix device driver

A SunOS device driver (/dev/mc) has been written to implement the applica-
tion model of the controller, and is described in this section. The mc device
driver does not support the many individual features of specific motor interfaces.
To access these capabilitics it is probably more eflective to map to the device
hardware from Unix, and directly manipulate control registers as described in
section 2.4.

2.3.1 Configuring the servo

Every axis has a parameter structure which describes the mode of operation to
the mc device driver.

#include <sys/mcdef.h>

/e
¢ Per joint parameter structure
+/
struct mc_param {
int which;
int 82, ai, a0, b2, b1, bO; /* compensator coefficients */
int ic_pos, ic_neg; /* feedforward constants */
int mode, clkdivisor;
int ilim, ilimmax; /* current limit »/
int plo, phi; /% position limits »/
int adc_a, adc_b: /* adc conversion law */
int ipole; /% current tilter pole */
| H

The units for ic-pos, ic.neg and ilim are D/A converter units. plo and phi
are in the units of whatever feedback source is selected. clkdivisoris the number

12




of hardware clock ticks between servo computations for this axis. That is, each
axis may be servoed at a sub-multiple of the hardware clock rate.
Possible values for mode are

MD.OFF Not servoed

MD.POS Position control mode
MD.VEL Velocity control mode
MD.TORQ Torque (current) control mode
MD.TEST1 Generate triangle waveform

Additional values may be or’d with the mode word, such as

COULCOMP Enable the Coulomb friction feedforward (S3)

ADFB Feedback comes from ¢ not § (S4) ,
ZEROFB Zero feedback, that is, open-loop operation (S5)
ADDMD Demand comes from ¢ not the computer (S1)
ADOFF Torque offset comes from ¢ not the computer

POSCHK Check position limits on feedback signal
SOFTERR Don’t shut motors down when error is detected

Note that not all switch combinations are useful, and this is not checked.
The servo parameters for an axis are set or examined using an ioctl() system
call on the mc device. To retrieve parameters from an axis the whick element
must first be set to indicate which axis the parameters are required for

struct mc_param par;

par.which = axis;
ioctl(mctd, MGETPARAM, &par);

mcfd is the file descriptor for the motor control device, /dev/mc0. To set
parameters the parameter structure should be initialized by the user’s program,
and the which element set to indicate which axis the parameters are destined
for.

struct mc_paraa par;

par.shich = 3;
par.mode = MD_VEL;
ioctl(mctd, MSETPARANM, &par);

Only one axis may be initialized per ioctl{). Al parameters arc initialized
as shown in Table 2.1 when the device is opened.

Also at open time the driver scans the axis controller bus looking for motor
interface cards from axis 0 through axis 15. When the device is closed, all motor
currents are set to zero and the PANIC signal asserted.
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Structure element | Initial value
a0

al

a2

b0

bl

b2

ic_pos
ic.neg
ilim
ilimmax
adc.a
ade.b
mode
clkdivisor
ipole

HFOOOQOOMOO =

/2 maximum current

D.OFF

o-—go-—-o

Table 2.1: Initial parameter values

2.3.2 Choice of parameters

It may appear that there is an overwhelming number of parameters to set before
anything can be done. This is true, and unavoidable with the general zppoach
taken. For the Unimate controller many of these issues are handled by the
6503 microprocessors and the code they execute from EPROM. The Unimate
servos have been tuned for good performance with the motors and mechanical
systems used. For MMCS these parameters must be determined by the user,
there is no alternative. The interactive tool mctool can let a user adjust con-
troller parameters to obtain good performance. Another approach would be an
adaptive control algorithm that modelled the motor from input/output data
and computes the compensator parameters for user specifed closed-loop poles.

The controller parameters are very dependent upon the type of motor, the
power amplifier, and mechanical drive train. Parameters that work well for one
motor may cause instability with another.

However some practical hints are in order

e Determine which direction the encoders change when a positive torque is
applied to the motor. If the encoders increase in a negative direction then
the DC gain of the compensator must be negative, and both Coulomb
friction compensation paramters must be negative.

o For position mode control PD control is appropriate, for velocity mode PI
control is appropriate.

e The maximum current should be left at some low value (default is half
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maximum) until the controller parameters and application are well be-
haved.

2.3.3 Accessing servo state

The driver maintains state information for each axis.

/*
* Per joint state and status
74
struct mc_state {
. int adcval; /% latest A/D value (processed) s/
int encnov; /* latest eucoder value */
int inow; /* last current command issued */
int error; /% latest error value s/
int fbnow; /* latest value of leeback quantity »/
int vel; /% latest velocity estimate d/dt {fbnow} =/
int errcode; /% current errors on this axis »/
};

A read() system call on the me device returns a vector of mc_state structures,
which may be used by the user as required. The state variables are

adcval The instantaneous value of the A/D after processing via the linear law.
encnow The instantaneous value of the incremental encoder counter.

inow The instantaneous or filtered motor current demand, is related to the
torque needed to maintain the position or velocity demand set. It will be
related to disturbance forces such as gravity or robot/object interactions.
If the parameter ipole is zero inowis the instantaneous current. If non-zero,
then the motor current demand is filtered by a unity gain first order digital
filter whose pole is at ipole/MC_FSCALE, and the value of inow should
be divided by MC_FSCALE to convert from fixed point filter arithmetic
to real value.

error The instantaneous error between the feeback quantity and the demand.

fonow The instantaneous value of the feedback quantity, which will always be
the same as either encnow or adcval .

vel The current plant output velocity estimate, in units per sample period.

errcode The last error code that occurred for this axis.
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MERR.PLO Low position limit crossed
MERR.PHI High position limit crossed
MERR.ILIM Sustained current overload
MERR_PANIC  Hardware panic detected
MERR.ZINDEX Zero index detected in CALIB mode
MERR-MASK Mask for actual error code bits

Table 2.2: Device error codes

State information is always available once the mc device is open. It is
updated at every SCLOCK, the sample interval is set by the MSETINTERVAL
joctl() call.

2.3.4 Error handling

The MMCS subsystem can generate a number of error conditions. The error sta-
tus for each axis is held in the errcede element of the motor’s state structure. The
value may be any of the codes shown in Table 2.2. The bit MERR_.POSERR,
if set, indicates that a position error, either high or low occurred. Since the
state structures are read-only the error status of all axes can only be cleared by
the MCLEARERROR ioctl() which will usually be called from the user’s error
handling code.

On all error conditions, and zero index detection, the application process
is notifed by a signal SIGUSR1. If the operting mode of the axis is or’d with
SOFTERR then no further action is taken by MMCS, and the user’s signal
handler is responsible for dealing the condition. If SOFTERR is not set the
robot shutdown by giving a zero current demand to all motors, and activating
the brakes.

The driver always checks for sustained torque overdrive of the motor. If the
current demand exceeds the parameter ilim for more than ilimmaz samples the
MMCS is shutdown. Motor current is always clipped to the maximum value
allowed by the D/A converter. If ilimmaz is zero, then motor currents are
clipped to ilim and no error condition i8 generated.

If mode has the POSCHK bit set then the feedback quantity, from enccder
or A/D is checked against the limit parameters phi and plo. The error condition
is generated only when the limits are crossed, not continuously while the limit
exists.

A hardware panic is initiated by one of the motor interface cards, or the
hand held panic button. The failsafe nature of the system design means that
panic will also be asserted if connections such as that between host and MMCS,
or MMCS and panic button are broken. The axis number bitfield in the error
code is meaningless [or this condition.

When an axis is placed in calibrate mode using the MCALIB ioctl(), then
the first detected zero index will send a SIGUSRI, and switch that axis out of
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calibrate mode. The high order 16 bits are the encoder value at the time of the
gero index.

2.8.5 Other device driver functions

Functions, not already discussed, that can be controlled via ioctl() calls are
given in Table 2.3.

2.3.6 Code example

Figure 2.4 is a code fragment that illustrates the important steps in controlling
motors via the me device driver,

2.4 Accessing hardware directly

This approach to interfacing, mapping device hardware registers to a Unix pro-
cess, is very specific to the flavor of Unix being used. Some likely approaches
are Ultrix via the /dev/bus device driver, or SunOS via the /dev/vme* device
drivers. User’s following this path should be very familiar with the material in
Chapters 4, 5 and the appendices. A SunOS code fragment is given in Figure
2.5.

For more details consalt the Unix manual entries for valloc(2) and mmap(2).
If an access is made to a address at which no device resides, the VMEbus times
out and a SIGSEGV (segmentation violation) signal is delivered to the user
process. A SIGBUS (bus error) signal can be delivered if the device hardware
messes up the VME cycle.

Note that accesses to devices via mapped memory cause “non-priviliged”
address modifiers to be issued while accesses from a device driver cause “priv-
iliged” address modifiers[1].

2.5 Control synthesis

There are a number of methods of transforming a continuous time system to a
discrete time system, such as

e Pole/zero mapping

¢ Bilinear transformation

¢ Bilinear transformation with frequency prewarping
e Z-transform

e Z-transform with zero-order hold

17



| Request

MGETNUMCARDS

MSETNUMIJOINTS

MGETPARAM

MSETPARAM

MSTOP

MENABLE

MSETVERBOSITY

MGETVERBOSITY

MCLEARERROR
MSETINTERVAL

MGETINTERVAL
MSETENC

MSETILED

Argument

Comments

int

int

struct me.param

struct mc.param

int

int

unsigned int

unsigned int
unsigned int

int

18

Return the number of motor interface cards
present in the axis controller bus.

Specify the number of axes that will be cor*:.iled
by the servo code. Returns EINVAL if this number
is greater than that supplied by the motor inter-
face cards present.

Return the parameter steucture for the axis speci-
fied by the which element of the passed parameter |
(read/write argument). Will return EINVAL if
which is greater than the number of axes, or if %o
is equal to zero.

Set the parameter structure for the axis specified
by the which element of the structure. Will return
EINVAL if which is greater than the number of
axes.

Stop all axes, set all motor torques to zero, joint
control modes to MD_.OFF, remove enable status,
and activate brakes.

Check that all boards are operating, and allow all
D/A’s to be writien.

If M.VERBOSE bit is set then the driver prints
additional diagnostic information during opera-
tion. If M_LERRORPRINT bit is set then infor-
mation is only printed during error situations.
Returns the verbosity flag.

Clears the error status for all axes.

Set the hardware timer interval in psec. Return
EINVAL if timer is ir.capable of meeting the inter-
val requested. If the time interval is greater than
the heartbeat timeconstant in the motor interface
board PANIC will be asserted by hardware, see
5.3.6

Get the hardware timer interval in psec

Set the hardware encoder register to given value.
Lower 8 bit specify axis, next 16 bits specify value.
Control axis indicator LEDs, each bit in the argu-
ment controls one LED associated with the axis.
Axis is specified by lower 8 bits, LEDs by bits 8. ..




[_Request

[ Argument

[ MDIAGMODE

int

| Comments

Specify the diagnostic operating mode. If bit
M.ANDIAG is set then analog loopback is en-
abled, if bit M.LNDIAG is set then encoder loop-
back is enabled. EINVAL is returned if the board
cannot perform the specified diagnostic.

MSETDAC

int

The lower 8 bits of the argument specify which
axis D/A is set to the value specified by the next
higher 12 bits.

MDACMODE

int

If argument is non-zero then DAC double buffer
mode is enabled for all axes, otherwise single
buffered mode is enabled.

MGETSTATS

struct mec.stats

Returns a structure of statistics gathered by
the driver about interrupts, such as total, those
missed, overrun etc.

MZEROSTATS

Zero the driver’s statistics structure.

MCALIB

ind

Puts the axis specified by the argument into cal-
ibration mode. When a zero index is detected,
the user’s process is notified by a SIGUSRI, and
a calibration ‘error’ status is indicated.

Table 2.3: Ioctl calls for the mc device




/*
* Example program showing use of MMCS system for 2 axis control in
* velocity mode with random trajectories.

[ ]
* pic 1/89
./
#include <stdio.h>
#include <sys/file.h>
#include “/usr/sys/sundev/mcdes .h"
#include <signal.h>
© int 14,
naxis,
verbose,
intval = 2;

int setp(i86];
char *pname;

#define VAL(b) (atoi(abl11))
main(ac, av)
int ac;
char seav;
{
struct mc_stats stats;
struct mc_state state[16];
struct mc_param param;
int i;
void mmcserr();

pname = av[0];

/*
it (ac == 1) {
usage: fprintf(stderr, "Usage: %s [I\n", av{0]);
exit(1);
}
*/

while (--ac > 0 &k #s++ay == '-2) {
register char *p = *av,

while (#+4p 1= \0’)
switch (*p) {

case 'v’; verbose++; break;
Wse 't intval = VAL(p); break;
}

Figure 2.2: MMCS code example




srandom(123458) ;

it ((£4 = open("/dev/mc0", O_RDWR)) < 0) {
perror(“open:*);
oxit(3);

}

signal (SIGUSR1, mmcaerr);

it (verbose) {
i = M_VERBOSE; _
ioctl(fd, MSETVERBOSITY, &i);
}

if (ioctl(fd, MGETNUMCARDS, &i) < 0)
perror(“ioctl:");
print2("%d cards in system\n", i);

naxis = is2;

if (doctl(fd, MSETNUMJOINTS, &naxis) < 0)
perror(“ioctl:");

intval *= 1000;

i? (ioctl(fd, MSETINTERVAL, &intval) < 0)
perror("ioctl:");

/*
* zero the encoders
s/
for (i=0; i<naxis; i++) {
setpli] = 0;
ioctl(fd, NSETEXC, &i);
/*
* initialize the parameters
»/
param.which = 0;
ioctl(fd, MGETPARAM, &paranm);
param.a0 = 50;
param.b0 = -1;
param.mods = MD_VEL | SOFTERR | PUSCHK;
param.plo = -6000;
param.phi = 6000;
param.ilimmax = 0;

}

Figure 2.3: MMGS code example




for (i=0; i<naxis; i++) {
param.which = i;
ioctl(fd, MSETPARANM, &paral);
}

if (ioct)(fd, MENABLE) < 0) {
fprintf(stderr, "cant enable\n");
exit(3);
o}

for (i=0; i<raxis; i++)
setpli] = veloc();
write(fd, setp, naxis s sizeof(int));

/*
# The program now waits, all control is done in a signal
* handler invoked when an axis exceeds its position limits.

s/

tor (;;)
sigpause();
}
void
mmcserr()
{
struct mc_stats state[16);
int i, code;
read(fd, stats, sizeof(state));
{octl(fd, MCLEARERROR);
for (i=0; i<naxis; i++) {
i1 ((code = state[i).errcode) == 0)
continue;
i? ((code & MERR_POSLIM) && (i>=3) &k (i<=4)) {
print£("%s limit on axis %d\n",
(code & MERR_PLO) ? “low" : "high",
i
b
/e
* choose random velocity in opposite direction
* for error axis
s/
setp[il = -veloc() * abs(setplil) / setplil;
}
else 22
printf(“error code Ox%x on axis %d\n", code, i);
)}
write(fd, setp, naxis ¢ sizeof(int));
}
veloc()

{ -




#include <signal.h>

#include <sys/file.d>
#include <sys/mman.hb>
#include <sys/types.h>

int 14, /¢ 2ile descriptor for the bus device »/
len, /* length of memory window to map */
of?, /* base of memory window */
buserr();

caddr_t addr, valloc();

it (len < getpagesize()) /* round len up to a page size */
len = getpagesize();

1d = open(”/dev/vme16%, O_RDWR); /* open the bus device */
it (24 < 0)
perror(“open”);

addr = valloc(len); /* allocate virtual memory #/
it (addr == SULL)
perror(“valloc");
/*
¢ map bus memory vindow into user’s virtual memory
*/
if (mmap(addr, len, PROT_READ|PROT_WRITE, MAP_SRHARED, fd, off) < 0)
perror("mmap");
signal (SIGBUS, buserr); /* set up signal handlers ¢/
signal (SIGSEGY, buserx);
buserr()
{

printf("BUS ERROR\n");
longjmp(env, 1);

Figure 2.5: SunOS code example for direct nardware access
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Each of these techniques has a different effect on characteristics of the system
such as DC gain, frequency response, overshoot etc. Standard control systems
texts[8](6] can provide more details.

One simple approach is the bilinear transform

where T is the sampling interval. The Laplace transform expression for a general

PID controller is
Ps+Ds*+1
s
where P, D and | are the proportional, derivative and integral gains respectively.
Substituting yields

:=2(IT/2 + 2D/T - P) + t=*(IT — AD/T) + (P + 2D/T + IT/2)
-z-241

u—
e

which is in the form implemented by the controller’s compensator. The coef-
ficients should be scaled, so that all are greater than 1, since all arithmetic is
performed in 32 bit fixed point.
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Chapter 3
mcTool

mcTool is an interzctive graphical tool that runs under the SunView window
environment. The Sunview Programmer’s Guide provides some details on the
conventions of this interface.

When invoked mctool opens the motor control device, /dev/mc0, and deter-
mines the number of motor interface cards. A panel is then built for every axis
present. The topmost panel provides global controls for the device, in particular
sample interval. The enable button must be pressed to commence servo opera-
tion once parameters for the various axes have been set. The diagmode switch
controls analog and encoder loop back modes of the motor interface board, see
Chapter 5.

mctool reads status information from the device driver five times per second
and updates the displayed values for encoder count, A/D and motor current.

Many parameters of the device driver may be altered, by typing in new
numeric valuss or adjusting control sliders. Operating modes such as Coulomb
friction compensation, LED indicator, feedback scurce, or servo mode may be
controlled by switches.

The SelpSource switch allows the driver setpoint to come from either

e the Setpoint slider
e the A/D converter

e asquare wave whose amplitude is controlled by the Amplitude slider which
replaces the Sefpoint slider in this mode.

The Mode switch controls the actual servo operating mode. Its values can
be any of

Off this axis not servoed in which case the Setpoint slider is not

Pos this axis is in position servo mode and the labels of the Setpoint slider

reflect this. displayed.
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Vel this axis is in-velocity servo mode and the labels of the Setfpoint slider
reflect this.

. Torq this axis is in torq servo mode and the labels of the Seipoint slider reflect
this.

Testl this axis is in MD.TEST1 mode which outputs a sawtooth waveform of
amplitude equal to the present current limit, Ilim.

Diag this axis is not servoed by any adjustment of the Setpoint slider causes
that value to be output to the D/A. This is useful for testing the D/As or
setting a specific output voltage.

s The PID gain sliders have units of %, that is the displayed value divided by
100 since the sliders can only have integer values. As the sliders are adjusted the
appropriate compensator coeflicients are computed and modified in the driver.

Some command line switches for mctool are

-tinterval Set the initial value of the interval time to the specified number of mil-
liseconds.

-u Dont update the encoder, A/D and motor current state information.
-3 Zero all incremental encoder registers.

Since many processes can open the mc device at the same time, mctool can
¢ be used as a monitor of the motor state while other processes are controlling it.
In this situation mctool should leave all axes in the
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Chapter 4

Host adaptor

4.1 Introduction

A fundamental component of the proposed modular motor control system (MMCS)
is the interface between the host bus and the axis controller bus. The first such
interface contructed is for VME bus host machines. This chapter describes the
hardware details necessary for application program development.

4.2 Adaptors in general

Physically an adaptor consists of two cards linked by a ribbon cable. Ore board
plugs into the host bus, and the other plugs into the axis controller bus.

For future host bus adaptors it is likely that the existing axis controller side
of the adaptor could be used, necessitating only a new host bus card.

4.2.1 Generic specification for adaptors

The adaptor provides five main functions

1. A mapping of memory accesses on the host bus to PC bus 1/O cycles on
the axis controller bus.

2. A programmable source of clock pulses, SCLOCK, used to synchronize
the latching of state measurements in all motor interface cards.

3. A [acility to interrupt the host processor on two conditions, clock pulse
SCLOCK and control bus detected panic condition PANIC.

4. A general purpose clock signal (around 8MIz) must be supplied to the
PC bus for use by motor intetface boards.

28




5. Safety features such as interfacing to the handheld panic button, and
control of mechanism brakes if present.

4.2.2 PCbus signals redefined

Two PC bus signals have been redefined for this application. From a purist’s
standpoint this is bad design, but is unavoidable unless a separate cable was
run linking all motor interface cards, or we adopted a different bus altogether.
Some care was taken in choosing which lines to use for these special purposes.

1. SCLOCK signal, used to control latching on all motor interface cards.
This signal uses one of the PC bus DMA request lines DRQ1...DRQ3. It
is jumper selectable on the adaptor and motor interface cards, and should
be set such that all cards use the same line, and that the line does not
conflict with other °C bus devices. ’

2. PANIC signal, u: :d to indicate that one of the motor interface cards has
detected an error condition. This line is a wired or, that is, any board can
pull it high to assert the PANIC condition, which is then available to all
other boards. '

4.3 In particular: VMEbus adaptor

Physically the adaptor is two cards linked by an 8 foot, 50way ribbon cable.
One board plugs into the VME host’s backplane, and the other plugs into the
control (PC) bus. The VME end is based upon a Logical Design Group VME-
5100D VMEbus prototype card with only 10 extra chips. The PC end is based
on a bare wirewrap prototype module.

4.3.1 VME memory Map

The adaptor occupies 2kbytes of VME A16 address space, layed out as shown
in Figure 4.1. It comprises two regions, one that is mapped to PC bus requests,
and another that is adaptor control registers. The current configurable base
address of this segment is 0x6000.

The adaptor only responds to 8(0) data, that is byte data at odd addresses.
Short (16 bit) requests to even addresses (odd address-1) will transfer the bot-
tom byte of the short to the adaptor, the top byte is ignored on write, and Oxff
on read.

4.3.2 PC bus access

When A10 is 0, all accesses to the adaptor ate passed straight through to the
PC slave bus. These accesses become /O space requests on the PC bus and
occupy the odd addresses 0x001 through 0x3FF on the VME bus.
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Ox441 vector

0x407 E"E:Sd‘e """ :
0x405 ! timer 2 ' PIT
0x403 || timerl '
Oxé01 |1 fimer0 __ !
Ox3ff A

A& P 256 bytes of PC 1/O space
* (odd bytes only)

0x0 Y

Figure 4.1: VME Host adaptor memory map (byte addresses shown)
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VME address

! adaptor select |
— 0 pcbus req "

7 6 5 4 0

R 1 adaptor req
i 1 1 1 | PocsR
] ] ] ] rcgister
“ - -
clock int. enable
panic int. enable
int. latch control
9 v 4
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PCbus i/o address 0,0 M 1;1;0:0,0 .
' ] ] ] ] J 1 ] [} ] L ] ]
Arrr———— e ———
board.sel. register.sel.

Figure 4.2: PC bus I/O space address formation
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The PC bus allows for 16 bit 1/O space addresses. IBM however define
only unique values or ranges for the least significant 9 bits of the 1/O address.
The address range for protoiype card, which we use for motor interface cards,
is 0x300 to 0x31f. However this is not enough address bits to support upto 16
interface cards, each with upto 32 bytes of registers. We thus use address bits
10...13 to peform the board select function, and bits 0 through 4 for register
select.

The address mapping between VME and PC 1/0 space is shown diagramat-
icaly in Figure 4.2. VME address bits A0L...A05 are mapped to PC address
bits A0O...A04. VME address bits A06... A09 are mapped to PC address bits
Al0...Al3. PC address bits A05...A09 are set via the control register. PC
address bits A14 and A15 are fixed at 0.

For the motor interface cards, VME address bits A0L...A05 will specify a
device register byte on an interface card. VME address bits A06... A09 specify
which controller card is being selected on the PC bus. Thus, a bank of up to
sixteen controller cards is mapped as a contiguous space of addresses on the
VME bus.

4.3.3 Adaptor Control Registers

When VME addresss bit A10is 1, an adaptor register is selected. These registers
include the interrupt vector register, the PC control/status register (PCCSR),
and the 8254 Programmable Interval Timer (PIT).

When address bit A06 is a 1 on the VME bus, the vector register is seiected.
This puts the vector register address at 0x0441. A single byte may be written
to this register to supply a vector number used during interrupt service on the
VME bus. This register may not be read.

When address bit AU6 is 0, one of the other registers is selected. When VME
addresses A05... A03 are (respectively in binary) 000, the PIT is selected. In
this case, A02 and A01 specify the register on the PIT. Thus, the PIT registers
are; timer 0, 0x401; timer 1, 0x403; timer 2, 0x405; control register, 0x407.

When A06 is low and A05... A03 are 001 (binzry), the PCCSR is selected.
Thus, its address is 0x409. The bitfields of this register are shown in Table 4.3.3.

4.3.4 The Servo Clock

The servo clock, SCLOCK, is the output of timer 1 on the 8254. It is clocked
by timer 0, which is in turn clocked by the 8 MHz system clock which is derived
from the VME bus. The system clock may be configured down to 4, 2, or 1
Mz, and is also passed to the PC bus. Timers 0...2 rre permanantly gated
on.

Since timers 1 and 2 are cascaded, allowing a count of 32 bits to be made at
8 MHz, a very wide range of servo loop times is achievable. SCLOCK clocks an
edge triggered latch which can cause a VME bus interrupt request. The servo
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clock is also passed to the PC bus on the DRQ 3 line, for use by the motor
interface cards.

The SCLOCK signal is also fed to timer 2 which may be used to by driver
software to check that interrupts are not being missed, that is at each interrupt
timer 2 is only 1 different from its value at the last interrupt.

4.3.5 Panic signal

The panic signal from the PC bus is logically combined with the status of
the handheld emergency stop button, and used to generate the system PANIC
signal. The rising edge of this signal clocks an edge triggered latch which can
cause a VME bus interrupt request.

4.3.6 Interrupts

Interrupts are controlled by the PC control register (PCCSR). When bit 7 of the
PCCSR is low, the two interrupt latches are fore.d to clear. They will remain
cleared until bit 7 is set high. In this state, a low-to-high transition of SCLOCK
will set the servo clock interrupt latch, and a low-to-high transition on PANIC
sets the panic interrupt latch. They will remain high until cleared by clearing
bit 7. Both latches are cleared together, so an interrupt service routine must
poll both interrupts and service the appropriate ones before clearing bit 7.

The status of the latches is read back from bits 5 and 6. To enable the latches
to interrupt the VME bus, a 1 must be written into bit 5 or 6. If interrupts are
used, don’t forget to set the vector latch, see section 4.3.3.

Currently the VME-5100D is set to interrupt at VME level 5, which is at
the same level as the clock and Unix scheduler for a Sun 3{2]. To alter the
level both jumpers J5 and J7 on the VME-5100D must be altered. Be sure to
remove the interrupt acknowledge (IACK) jumper from the backplane for the
slot containing the VME-5100D. A “spurious level 7 interrupt” message on the
Sun console indicates that the IACK daisy chain is incorrectly jumpered or that
J5 and J7 on the VME-5100D are inconsistent.

4.3.7 LED indicators

The adaptor card has two LED indicators. The green LED is the SCLOCK
signal, while the red LED is the status of the user interrupt request to the
VME-5100D interrupter logic.

4.3.8 Miscellaneous Notes

VME bus resets is passed to the PC bus. The reset signal also resets the PCCSR
to 0x00 (interrupts off).
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The PC side of the adaptor may be powered down while the system is running
without affecting the VME side. To disconnect the VME side from a SUN 3,
the SUN must be shut down, powered off, and the VME-5100D board and 3U-
2U adapter must be removed from the SUN backplane, and the IACK jumper
installed.
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Bit

Write operation

Read operation

40

the PC bus address bits
A05 through A09

when set, enables inter-
rupts from SCLOCK

when set, enables panic
interrupts from the PC
bus

controls the clearing of
the two interrupt latches.
When it is 0, the latches
get cleared. When it is a
1, the latches may get set

what was written to
those bits

Bit 5is 1 if an SCLOCK
interrupt

has been latched (but not
necessarily passed to the
VME bus)

Bit 6 is a 1 if a
panic interrupt has been
latched (also, not neces-
sarily passed to the VME
bus)

returns what was written
to it.

Table 4.1: PCCSR bitfields




Chapter 5

The Mark I motor

interface card

The motor interface is the electronics that connects the motor to the axis con-
troller bus. It provides an analog drive signal to the motor, and measures shaft
angle via an incremental encoders, as well as application specific quantities via
a general purpose analog input.

This chapter provides hardware specifications and details to those needing
to program the device hardware directly.

5.1 Servo board specification

5.2 Design aims

One of the most important design features is to allow for the non-deterministic
timing of the host computer, targetted in the first instance to be a SUN worksta-
tion running Unix. The use of an additional CPU running a real-time operating
system would provide better performance, albeit at greater cost.

At the short sample times required (less than 10ms) a Unix process cannot
be reliably scheduled to respond. However a device driver working at high
hardware priority will respond within 100us, but will not be deterministic due
to interrupts being locked out in critical regions of the Unix kernel. Thus, it
was not desirable for the data sampling to be controlled directly by the host
computer.

Instead, sampling is controlled by an axis controller bus signal SCLOCK,
and at each sample all A/D converters and encoder registers are latched, and
the host notified by interrupt that new data has arrived. The host device driver
can then read the robot state and compute new setpoints to be written to the

36



e

D/A converters. State is thus sampled at a fixed intervals with zero timing
error. Additionally the D/A converter updates can occur in a double buffered
mode in which the new values are not output until the next sample time.

5.3 Description

Each board provides all the functionality required to control two servo axes,
referred to here as joint 1 and joint 2. Each controller consists of an A/D, a
D/A, and an incremental encoder interface (IEI).

o AD574 12 bit analog to digital converter. This may be used to input
application specific signals such as joint angle, torque, current etc.

e ADGB67 12 bit digital to analog converter for specifying motor current or
torque. The device has the ability to double buffer the digital commands.

o HCT2000 incremental encoder interface (1EI) to decode quadrature signals
from incremental encoders. This device has 16 bit resolution, and can be
read or written at anytime. It also has the facility for the count to be
latched by an external signal, which we use for calibration purposes.

& 18255 to provide control of all board operating modes and to provide status
information. The 8255 device provides 24 programmable input or output
lines. The usage in this interface is summarized in Table 5.1.

The D/As contain two cascaded 12 bit latches. The D/A must be accessed
twice to load a new value into the first latch, once for the low byte, and once
for the high nibble. D/A data is 12 bit offset binary. The loading of the second
latch, and hence the D/A output, is controlled by port B bit 3 of the 8255 device
to occur either when the high nibble is written, or on the edge of the SCLOCK
signal.

The A/Ds convert all 12 bits on the edge of the SCLOCK. The 12 bit offset
binary values must be read in two byte accesses. The status of the conversion can
be read via port C bit 4 of the 8255, which when set, indicates both converters
are done.

Data sheets on these devices are provided in an Appendix.

5.3.1 Memory map

The memory map of the motor interface card given in Figure 5.1 shows the
addresses as seen from the PC bus. All of the addresses given are relative to
the board’s base address, and are five bits only.

The board resides at address 0x300 to 0x31F in 9 bit (IBM standard) PC
1/0 space. However this is not enough address bits to support upto 16 interface
cards, each with upto 32 bytes of registers. We thus use address bits 10...13 to
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Figure 5.1: Servo board memory map
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peform the board select function, and bits 0 through 3 for register select. Thus,
0x0300 is the base of board 0, and 0x3F00 is the base of board fifteen. The
board address is set by a 4 bit DIPswitch on the card, when a switch is on, or
closed, it corresponds to a 0 bit.

The 8255 programmable peripheral interface (PPI) is at addresses 0x00
through 0x03.

The HCT2000 for joint 1 is at addresses 0x04 through 0x05, while that for
joint 2 is at addresses 0x08 through address 0x07. The most significant byte
occupies the lower address. The HCT2000 may be written to initialize the 16 bit
up/down counter. It may be read at anytime to give the instantaneous counter
value, however the first read after a latch command will yield the counter value
at the time of the latch. The operating mode of the HCT20C0 is set via port A
of the 8255, and would normally be mode 5, although a number of other modes
such as frequency and interval measurement may be useful. The HCT2000's
two byte registers should always be accessed in the same order after reset, see
the applications note for more details.

The D/As are at addresses 0x08 through 0x0B. These locations are write-
only. Location 0x08 is the low byte of D/A 1, and 0x09 is the high nibble of
D/A 1. Similarly, 0x0A and 0x0B write to D/A 2.

The A/Ds are at addresses 0x0C through 0x0F. These locations are read-
only. Location 0x0C returns the low byte of A/D 1. Location 0x0D returns the
low byte of A/D 2. Location 0x0E returns the high nibbles of both A/Ds. The
high nibble of A/D 1 will reside on bits 0 through 3 of this byte, and A/D 2
will use bits 4 through 7. '

5.3.2 The latch signal

The latch signal is used to start the conversion of the A/Ds, enable the output
latch on the D/As, and cause the 1Es to latch their counts.

This latch signal may come from either the rising edge of SCLOCK (a back-
plane signal from the host adaptor) or be generated via addressing (see Figure
5.1). To enable latch on the rising edge of SCLOCK port B bit 2 of the 8255
must be asserted.

Any access to location 0x10 will cause a latch signal to the A/Ds and IEls,
just as the SCLOCK signal does. Any access to 0x12 will do the same, except
that it will cause all boards in the controller to simultaneously latch. Jumper
E021...E023 (see Section 5.4.3) control whether or not the D/A responds to
the software latch signals.

5.3.3 D/A double buffering

The D/A converters are capable of working in normal or double buffered mode.
In normal mode, the D/A analog output reflects exactly what is written to it.
In double buffered mode, the analog output changes to the last written value
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| Bit | Comments
Port A:(OUTPUT)

0-2 | Control the operating mode for both 1EIs (HCT2000 chips).

3 Diagnostic LED 1.

4 Diagnostic LED 2.

5 Artificial encoder A signal for IEIs.

6 Artificial encoder B signal for IEls.

7 Artificial encoder 1 signal for IEls.

Port B:(OUTPUT)

0 When 0, the artificial encoder signals are passed to the HCT2000s.
When 1, encoder signals from the joints are passed through.

1. | When 0, the output of the D/As is looped back to the A/Ds. When
1, the output of the D/As is switched to the joints.

2 This bit must be a 1 for the external servo clock on the PC bus to
affect this board.

3 This bit controls the output mode of the D/As. When 0, writing to
the high address of a D/A causes its output to be updated. When
1, the internal servo clock, conditioned by Bit 2, causes both D/A
outputs to be updated.

4 When 0, the index latches (see Port C, bits 1 and 3) are cleared.
When 1, the index latches get set on the next index pulse. Also,
when this bit is a 1, index pulses cause the IEIs to latch.

5-7 | Unassigned

Port C:(INPUT)

0 This returns the status of the heartbeat for joint 1. A 1 indicates
that all is well. The heartbeat gets retrizgered when the low byte
of the D/A gets written to.

| This is a 1 if the index for joint 1 has been latched. The index gets
latched when the index latch enable is set to 1 (Port B, bit 4) and
a high level is seen on the index input.

2 The same as Bit 0, but for joint 2.

3 The same as Bit 1, but for joint 2.

4 This signal is high when the A/Ds are not converting. A low to
high transition on this signal means that good data is in the data
latches for the A/Ds.

Table 5.1: PPI bits
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synchronously with the latch signal. Thus guarantees a fixed one sample time
delay between reading state and providing a new setpoint value.

5.3.4 Calibration

Calibration of incremental encoders is important for control of many manipu-
lators. Frequently the procedure involves driving the axis so that the encoder’s
sero index is detected, and measuring the shaft angle with some low resolution
absolute transducer (such as a potentiometer), and then computing the correct
value for the encoder register. In RFMS the axes were driven, the zero index
status polled, and the motor stopped when the index is detected. It was found
necessary to drive the motors very slowly else the index would be missed.

The new interface provides a calibration mode, in which the motor can be
driven at any speed, and when the index pulse is detected, the instantaneous
encoder value is latched and the host notified. To enable this mode port B
bit 4 of the 8255 should be asseried. Port C bits 1 and 3 indicate that the
1Els for joints 1 and 2 respectively have been latched. The IEls can then be
read to determine the encoder count at which the index pulse occured, another
encoder read to obtain the current encoder counts, and determination of motor
potentiometer voltages provides all the information needed to determine the
absolute motor angle.

Note that subsequent index pulses are not locked out, and will also latch the
encoder count. Detection of an index pulse does not stop the motor, this must
still be done by host software upon detection of the index latched status.

5.3.5 Diagnostics

The board has a number of diagnostic test facilities built in. Firstly the input
of the A/D converters can be “looped back” to the D/A outputs, which allows
testing of the A/D, D/A devices and the analog signal paths. The loopback is
done via a relay, so some short time should be allowed for the relay contacts to
close. This mode is enabled by setting 8255 port B bit 1.

Secondly, synihetic encoder signals A, B and I can be fed into the IEIs to
test their operation. The synthetic signals are the same for both axes, and come
from 8255 port A bits 5...7. This mode is enabled by clearing 8255 port B bit
0.

5.3.8 Panic signal

One signal on the backplane is the active high PANIC line, that may be asserted
by any board that detects a failure. The only failure detected by this interface
card is a failure to regularly update the D/A converters with new setpoint values.
The D/A write signal drives a oneshot which has a 50ms timeconstant. The
outputs of the oneshot (one per axis) are called heartbeats (since they indicates
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Figure 5.2: Motor interface board layout

something is going on), and can be checked by onboard LED indicators and by
software via port C bits 0 and 2 of the 8255.

Note that the “panic” condition will not go away until all the D/A converters
have been written to initially. Note also that for SCLOCK intervals longer
than the heartbeat timeconstant PANIC will be asserted regularly, it was not
considered that servoing at less than 20Hz would be useful.

5.4 Board details

Details of the motor interface board layout are given in Figure 5.2.

5.4.1 Switches

There are two switches on the card, one per axis. Their purpose is to take an
axis “out” of the controller without having to remove a card, or half a card. In
the enable position everything works as described. When disabled, the analog
current drive for the axis is switched from the D/A output to ground, and the
heartbeat signal is ignored, thus panic won't be caused when that axis’s D/A is
not updated.
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5.4.2 LED indicators
LED Color Comment
encAl Green | Encoder A signal for joint 1.
encBl1 Green | Encoder B signal for joint 1.
encll Green | Encoder index signal for joint 1.
encA2 | Green | Encoder A signal for joint 1.
encB2 | Green | Encoder B signal for joint 1.
encl2 Green | Encoder index signal for joint 1.
h/beatl | Green | Heartbeat signal for joint 1.
h/beat2 | Green | Heartbeat signal for joint 2.
s | gpl Red General purpose (software controllable) indicator for joint 1.
gp2 Red General purpose (software controllable) indicator for joint 2.
power Red Board 5V supply is OK. '

Table 5.2: Motor interface LED indicators

5.4.3 Configuration

There are four groups of jumpers, as described in by Table 77

From To Comment
EC01 | EC02 | A/D1 10V range
E003 | A/D1 20V range
E004 | E005 | A/D2 10V range
E006 | A/D2 20V range
"E007 | E008 | If closed D/A1 10V span
E009 | E010 | If closed D/A2 10V span
E023 | E021 | D/A does not respond to software latch
E022 | D/A responds to software latch
E020 | E017 | Sample clock is DRQ1
E018 | Sample clock is DRQ2
E0189 | Sample clock is DRQ3
EO11 | EO12 | Panic is IRQ3
E013 | Panic is IRQ4
E014 | Panicis IRQ5
E015 | Panic is IRQ8
E016 | Panic is IRQ7

Table 5.3: Mark 1 configuration jumpers

They are used to set voltage scaling for the A/D and D/A converters as well
as to select which PC bus lines are used for the SCLOCK and PANIC signals.

e
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